By Topic

Modeling of slip for wheeled mobile robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Balakrishna ; Dept. of Mech. Eng., Indian Inst. of Sci., Bangalore, India ; A. Ghosal

Wheeled mobile robots (WMRs) are known to be non-holonomic systems, and most dynamic models of WMRs assume that the wheels undergo rolling without slipping. This paper deals with the problem of modeling and simulation of motion of a WMR when the conditions for rolling are not satisfied at the wheels. The authors use a traction model where the adhesion coefficient between the wheels of a WMR and a hard flat surface is a function of the wheel slip. This traction model is used in conjunction with the dynamic equations of motion to simulate the motion of the WMR. The simulations show that controllers which do not take into account wheel slip give poor tracking performance for the WMR and path deviation is small only for large adhesion coefficients. This work shows the importance of wheel slip and suggests use of accurate traction models for improving tracking performance of a WMR

Published in:

IEEE Transactions on Robotics and Automation  (Volume:11 ,  Issue: 1 )