By Topic

Machine learning approaches to estimating software development effort

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Srinivasan, K. ; Personal Comput. Consultants Inc., Washington, DC, USA ; Fisher, D.

Accurate estimation of software development effort is critical in software engineering. Underestimates lead to time pressures that may compromise full functional development and thorough testing of software. In contrast, overestimates can result in noncompetitive contract bids and/or over allocation of development resources and personnel. As a result, many models for estimating software development effort have been proposed. This article describes two methods of machine learning, which we use to build estimators of software development effort from historical data. Our experiments indicate that these techniques are competitive with traditional estimators on one dataset, but also illustrate that these methods are sensitive to the data on which they are trained. This cautionary note applies to any model-construction strategy that relies on historical data. All such models for software effort estimation should be evaluated by exploring model sensitivity on a variety of historical data

Published in:

Software Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 2 )