By Topic

Non-local modeling of impact ionization for optimal device/circuit design in fully depleted SOI CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krishnan, S. ; Dept. of Electr. Eng., Florida Univ., Gainesville, FL, USA ; Fossum, J.G.

Deep-submicron, thin fully depleted (TFD) SOI MOSFETs are potentially viable for future ULSI technology, and they also have potential applications in low-power circuits. However as they are aggressively scaled down, premature breakdown and off-state latch, attributed to the parasitic BJT driven by impact-ionization, threaten their viability. Reliable modeling of these effects requires a non-local analysis of impact ionization, as opposed to conventional local-field analyses that tend to over-predict the carrier generation rate. Furthermore, to study the mentioned effects at the circuit level, the models have to be compact while reflecting the underlying device physics. In this paper we describe the development and implementation of a non-local model for impact ionization in fully depleted SOI MOSFETs in both strong and weak inversion, and we discuss application of the device model in our predictive circuit simulator SOISPICE-2 to design optimization of scaled SOI CMOS

Published in:

SOI Conference, 1993. Proceedings., 1993 IEEE International

Date of Conference:

5-7 Oct 1993