By Topic

Run-time and compile-time support for adaptive irregular problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sharma, S.D. ; Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA ; Ponnusamy, R. ; Moon, B. ; Yuan-Shin Hwang
more authors

In adaptive irregular problems, data arrays are accessed via indirection arrays, and data access patterns change during computation. Parallelizing such problems on distributed memory machines requires support for dynamic data partitioning, efficient preprocessing and fast data migration. This paper describes CHAOS, a library of efficient runtime primitives that provides such support. To demonstrate the effectiveness of the runtime support, two adaptive irregular applications have been parallelized using CHAOS primitives: a molecular dynamics code (CHARMM) and a code for simulating gas flows (DSMC). We have also proposed minor extensions to Fortran D which would enable compilers to parallelize irregular for all loops in such adaptive applications by embedding calls to primitives provided by a runtime library. We have implemented our proposed extensions in the Syracuse Fortran 90D/HPF prototype compiler, and have used the compiler to parallelize kernels from two adaptive applications

Published in:

Supercomputing '94., Proceedings

Date of Conference:

14-18 Nov 1994