By Topic

Annealing behavior of magnetic anisotropy in CoNbZr films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Miura ; Hitachi Ltd., Yokohama, Japan ; H. Katahashi ; K. Muramori ; M. Kajiyama

The effect of magnetic and nonmagnetic annealing on the magnetic anisotropy in CoNbZr films, formed by a DC opposing-targets sputtering method, was investigated. It was revealed that the origin of the magnetic anisotropy is the directional ordering of the magnetic atoms. The anisotropy fields and the direction of the easy axis obtained when the films are annealed in zero magnetic field are almost the same as those for the magnetic field parallel to the easy axis of the as-deposited films. When the films are annealed in a magnetic field perpendicular to the easy axis, the anisotropy field induced in parallel with the magnetic field, Hk(t), is well represented by the following formula: ln {1-Hk(t )/Hk(∞)∝-√Tt, where Hk(∞) is the thermal equilibrium value of the anisotropy field and D is the diffusion constant. The activation energy of the as-deposited film is 0.86 eV. Annealing the film increases the activation energy which is 2.1 eV when the film is annealed at a temperature of 450°C for 2 h

Published in:

IEEE Transactions on Magnetics  (Volume:24 ,  Issue: 5 )