By Topic

On cosine-modulated wavelet orthonormal bases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gopinath, R.A. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Burrus, C.S.

Multiplicity M, K-regular, orthonormal wavelet bases (that have implications in transform coding applications) have previously been constructed by several authors. The paper describes and parameterizes the cosine-modulated class of multiplicity M wavelet tight frames (WTFs). In these WTFs, the scaling function uniquely determines the wavelets. This is in contrast to the general multiplicity M case, where one has to, for any given application, design the scaling function and the wavelets. Several design techniques for the design of K regular cosine-modulated WTFs are described and their relative merits discussed. Wavelets in K-regular WTFs may or may not be smooth, Since coding applications use WTFs with short length scaling and wavelet vectors (since long filters produce ringing artifacts, which is undesirable in, say, image coding), many smooth designs of K regular WTFs of short lengths are presented. In some cases, analytical formulas for the scaling and wavelet vectors are also given. In many applications, smoothness of the wavelets is more important than K regularity. The authors define smoothness of filter banks and WTFs using the concept of total variation and give several useful designs based on this smoothness criterion. Optimal design of cosine-modulated WTFs for signal representation is also described. All WTFs constructed in the paper are orthonormal bases

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 2 )