By Topic

Likelihood calculation for a class of multiscale stochastic models, with application to texture discrimination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Luettgen, M.R. ; Alphatech Inc., Burlington, MA, USA ; Willsky, A.S.

A class of multiscale stochastic models based on scale-recursive dynamics on trees has previously been introduced. Theoretical and experimental results have shown that these models provide an extremely rich framework for representing both processes which are intrinsically multiscale, e.g., 1/f processes, as well as 1D Markov processes and 2D Markov random fields. Moreover, efficient optimal estimation algorithms have been developed for these models by exploiting their scale-recursive structure. The authors exploit this structure in order to develop a computationally efficient and parallelizable algorithm for likelihood calculation. They illustrate one possible application to texture discrimination and demonstrate that likelihood-based methods using the algorithm achieve performance comparable to that of Gaussian Markov random field based techniques, which in general are prohibitively complex computationally

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 2 )