By Topic

Hierarchical modeling of availability in distributed systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Hariri ; Dept. of Electr. & Comput. Eng., Syracuse Univ., NY, USA ; H. Mutlu

Distributed computing systems are attractive due to the potential improvement in availability, fault-tolerance, performance, and resource sharing. Modeling and evaluation of such computing systems is an important step in the design process of distributed systems. We present a two-level hierarchical model to analyze the availability of distributed systems. At the higher level (user level), the availability of the tasks (processes) is analyzed using a graph-based approach. At the lower level (component level), detailed Markov models are developed to analyze the component availabilities. These models take into account the hardware/software failures, congestion and collisions in communication links, allocation of resources, and the redundancy level. A systematic approach is developed to apply the two-level hierarchical model to evaluate the availability of the processes and the services provided by a distributed computing environment. This approach is then applied to analyze some of the distributed processes of a real distributed system, Unified Workstation Environment (UWE), that is currently being implemented at AT&T Bell Laboratories

Published in:

IEEE Transactions on Software Engineering  (Volume:21 ,  Issue: 1 )