Cart (Loading....) | Create Account
Close category search window

Measurement of digital noise in mixed-signal integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Makie-Fukuda, K. ; Central Res. Lab., Hitachi Ltd., Tokyo, Japan ; Kikuchi, T. ; Matsuura, T. ; Hotta, M.

This paper proposes a method of measuring the influence of digital noise on analog circuits using wide-band voltage comparators as noise detectors. Noise amplitude and r.m.s voltage are successfully measured by this method. A test chip is fabricated to measure the digital noise influence. From the experimental results, it is shown that the digital noise influence can be considerably reduced by using a differential configuration in analog circuits for mixed-signal IC's. The digital noise influence can be further reduced by lowering the digital supply voltage. These results show that the voltage-comparator-based measuring method is effective in measuring the influence of digital noise on analog circuits

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:30 ,  Issue: 2 )

Date of Publication:

Feb 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.