By Topic

Flux transfer devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. Harada ; ERATO/JRDC, Tokyo, Japan ; W. Hioe ; E. Goto

Flux transfer device theory is reviewed. In such devices, generalized magnetic flux, defined as the time integral of voltage, is used to describe the device characteristics. The Josephson junction and inductor are the main circuit elements in flux transfer devices, because they maintain a constant value for the time integral of voltage. Flux transfer devices are based on either an RF SQUID (superconducting quantum interference device) or a fluxon device. Four devices, including the parametric quantron and the quantum flux parametron, are reviewed as applications of the RF SQUID. The fluxon feedback oscillator and a soliton device are also reviewed as applications of fluxon devices. The quantum flux parametron is then described. The parametron principle and the fundamental properties of the quantum flux parametron such as gain, switching speed, and power dissipation are discussed. Logic circuits and a memory cell are also reviewed. A novel analog-to-digital converter is proposed as an application of the quantum flux parametron

Published in:

Proceedings of the IEEE  (Volume:77 ,  Issue: 8 )