By Topic

On-line identification of hidden Markov models via recursive prediction error techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Collings, I.B. ; Dept. of Syst. Eng., Australian Nat. Univ., Canberra, ACT, Australia ; Krishnamurthy, V. ; Moore, J.B.

An on-line state and parameter identification scheme for hidden Markov models (HMMs) with states in a finite-discrete set is developed using recursive prediction error (RPE) techniques. The parameters of interest are the transition probabilities and discrete state values of a Markov chain. The noise density associated with the observations can also be estimated. Implementation aspects of the proposed algorithms are discussed, and simulation studies are presented to show that the algorithms converge for a wide variety of initializations. In addition, an improved version of an earlier proposed scheme (the Recursive Kullback-Leibler (RKL) algorithm) is presented with a parameterization that ensures positivity of transition probability estimates

Published in:

Signal Processing, IEEE Transactions on  (Volume:42 ,  Issue: 12 )