By Topic

VLSI implementation of a variable-length pipeline scheme for data-driven processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Yamasaki, T. ; Mitsubishi Electr. Corp., Amagasaki, Japan ; Shima, K. ; Komori, S. ; Takata, H.
more authors

A VLSI-oriented variable-length pipeline structure for data-driven processors is presented. Ordinary inline pipelines have the problem of minimizing the average total processing time through the pipeline, since subdivision of a function along the pipeline is usually optimized for the most complex operations in spite of the fact that simpler operations need fewer stages. As a solution to this problem, a variable-length pipeline scheme in which data go through only the necessary stages according to information contained within is proposed. The scheme has been implemented on a test chip to verify performance. The chip demonstrated a minimum fall-through time (data transmission time from input to output) of 14.4 ns and a data transmission rate in the pipeline of 59 megaword/s (that is, 1/16.9 ns) as a first-in first-out (FIFO) store. By modifying the data transfer control and allocating the processing functions corresponding to the data interval of 16.9 ns, this scheme is applicable as a high-performance processing unit for data-driven processors

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:24 ,  Issue: 4 )