By Topic

Variable-rate source coding theorems for stationary nonergodic sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Effros, M. ; Inf. Syst. Lab., Stanford Univ., CA, USA ; Chou, P.A. ; Gray, R.

For a stationary ergodic source, the source coding theorem and its converse imply that the optimal performance theoretically achievable by a fixed-rate or variable-rate block quantizer is equal to the distortion-rate function, which is defined as the infimum of an expected distortion subject to a mutual information constraint. For a stationary nonergodic source, however, the. Distortion-rate function cannot in general be achieved arbitrarily closely by a fixed-rate block code. We show, though, that for any stationary nonergodic source with a Polish alphabet, the distortion-rate function can be achieved arbitrarily closely by a variable-rate block code. We also show that the distortion-rate function of a stationary nonergodic source has a decomposition as the average of the distortion-rate functions of the source's stationary ergodic components, where the average is taken over points on the component distortion-rate functions having the same slope. These results extend previously known results for finite alphabets

Published in:

Information Theory, IEEE Transactions on  (Volume:40 ,  Issue: 6 )