By Topic

A 2.2 W, 80 MHz superscalar RISC microprocessor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Gerosa, G. ; Motorola Inc., Austin, TX, USA ; Gary, S. ; Dietz, C. ; Dac Pham
more authors

A 28 mW/MHz at 80 MHz structured-custom RISC microprocessor design is described. This 32-b implementation of the PowerPC architecture is fabricated in a 3.3 V, 0.5 μm, 4-level metal CMOS technology, resulting in 1.6 million transistors in a 7.4 mm by 11.5 mm chip size. Dual 8-kilobyte instruction and data caches coupled to a high performance 32/64-b system bus and separate execution units (float, integer, loadstore, and system units) result in peak instruction rates of three instructions per clock cycle. Low-power design techniques are used throughout the entire design, including dynamically powered down execution units. Typical power dissipation is kept under 2.2 W at 80 MHz. Three distinct levels of software-programmable, static, low-power operation-for system power management are offered, resulting in standby power dissipation from 2 mW to 350 mW. CPU to bus clock ratios of 1×, 2×, 3×, and 4× are implemented to allow control of system power while maintaining processor performance. As a result, workstation level performance is packed into a low-power, low-cost design ideal for notebooks and desktop computers

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:29 ,  Issue: 12 )