By Topic

Vector quantization using tree-structured self-organizing feature maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tzi-Dar Chiueh ; Inst. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Tser-Tzi Tang ; Liang-Gee Chen

In this paper, we propose a binary-tree structure neural network model suitable for structured clustering. During and after training, the centroids of the clusters in this model always form a binary tree in the input pattern space. This model is used to design tree search vector quantization codebooks for image coding. Simulation results show that the acquired codebook not only produces better-quality images but also achieves a higher compression ratio than conventional tree search vector quantization. When source coding is applied after VQ, the new model performs better than the generalized Lloyd algorithm in terms of distortion, bits per pixel, and encoding complexity for low-detail and medium-detail images

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:12 ,  Issue: 9 )