By Topic

Tight bounds on Rician-type error probabilities and some applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pooi Yuen Kam ; Dept. of Electr. Eng., Nat. Univ. of Singapore, Singapore

Consider the classic problem of evaluating the probability that one Rician random variable exceeds another, possibly correlated, Rician random variable. This probability is given by Stein (1964) in terms of the Marcum's Q-function, which requires numerical integration on the computer for its evaluation. To facilitate application in many digital communication problems, we derive here tight upper and lower bounds on this probability. The bounds are motivated by a classic result in communication theory, namely, the error probability performance of binary orthogonal signaling over the Gaussian channel with unknown carrier phase. Various applications of the bounds are reported, including the evaluation of the bit error probabilities of MDPSK and MPSK with differential detection and generalized differential detection, respectively. The bounds prove to be tight in all cases. Further applications will be reported in the future

Published in:

Communications, IEEE Transactions on  (Volume:42 ,  Issue: 12 )