By Topic

Acoustic echo-canceler using the FBAF algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Reza Asharif, M. ; Dept. of Electr. and Electron. Eng., Teheran Univ., Iran ; Amano, F.

An acoustic echo-canceler for teleconferencing systems is realized based on the frequency bin adaptive filtering (FBAF) algorithm. In the FBAF algorithm, each frequency bin does an independent adaptive filtering, so that parallel processing can be used to increase the throughput of the system. Hardware size can be reduced to about 25% of the FIR time domain adaptive filter (TDAF) requirement. The realized echo canceler allows a comfortable conversation with only 8 ms of delay. The hardware prototype contains 12 VSP chips and one DSP chip, An ERLE (echo return loss enhancement) of 30 dB was achieved using this prototype hardware for an echo reverberation path with 260 ms delay. An efficient method for normalizing the convergence factor of the FBAF algorithm with a correlated input signal is given that speeds up the convergence rate. The performance is shown by computer simulation

Published in:

Communications, IEEE Transactions on  (Volume:42 ,  Issue: 12 )