By Topic

Autoregressive (AR) and autoregressive moving average (ARMA) spectral estimation techniques for faster TLM analysis of microwave structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eswarappa, C. ; Dept. of Electr. & Comput. Eng., Victoria Univ., BC, Canada ; Hoefer, W.J.R.

Autoregressive (AR) and autoregressive moving average (ARMA) techniques have been successfully implemented in conjunction with the transmission line matrix (TLM) method for efficient time-domain analysis of microwave structures. The AR technique can be used to compute the full time-domain response from a relatively short segment of the early TLM response. It was found that the least-square technique of estimating the AR parameters requires a shorter time record than solving Yule-Walker equations through the Levinson-Durbin algorithm. The ARMA technique can be used to compute the scattering parameters of microwave structures without using the discrete Fourier transform. A recursive least square covariance ladder algorithm has been used for ARMA modeling. Both AR and ARMA models have been validated by applying them to waveguide and suspended substrate stripline filters. With these techniques, the speed of the computationally intensive TLM algorithm can be increased up to five times

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:42 ,  Issue: 12 )