By Topic

Analysis and design of quadruple-ridged waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weimin Sun ; Telecommun. Res. Center, Arizona State Univ., Tempe, AZ, USA ; Balanis, C.A.

In a previous paper, a unified approach has been proposed for the analysis and design of single- and double-ridged waveguides by a magnetic field integral equation (MFIE) formulation (see ibid., vol. 41, no. 11, p. 1965-71, Nov. 1993). This paper presents a continuing work with emphasis on the design of quadruple-ridged waveguides. The characteristics of square, circular and diagonal quadruple-ridged waveguides, including cutoff frequencies, attenuation, impedance and modal field distributions, are for the first time systematically analysed and reported. Distinct to being in a single- or double-ridged waveguide, the fundamental-mode in a quadruple-ridged waveguide has a cutoff frequency very close to that of the second-lowest mode, thus the natural single mode bandwidth is very small. However, when the second-lowest mode is effectively suppressed or not excited, a very wide bandwidth (6:1) can be achieved. This unique property, plus the capabilities of dual-polarization, high power, and low impedance, makes the quadruple-ridged waveguides well-suited to many antenna and microwave applications

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:42 ,  Issue: 12 )