Cart (Loading....) | Create Account
Close category search window
 

Effects of neutron irradiation on Nd-Fe-B magnetic properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cost, J.R. ; Los Alamos Nat. Lab., NM, USA ; Brown, R.D. ; Giorgi, A.L. ; Stanley, J.T.

Nd-Fe-B permanent magnets from two different manufacturers were irradiated in the Omega West reactor at Los Alamos National Laboratory, with fast neutrons at temperatures of 426 K (153 degrees C) and 350 K (77 degrees C) to fluences of 5.0*1016 N/cm2 and 6.1*1016 N/cm2, respectively. At intervals during the irradiation the samples were removed from the reactor and the remanence measured at room temperature. The initial loss of remanence for irradiation at 426 K was 10% for a fluence of 1015 N/cm2. At 350 K the initial loss rate was roughly half this value. The loss rates were nearly the same for samples from the two different manufacturers. These losses are due to the irradiation since the remanence does not decay with annealing at 426 K. Remagnetization after irradiation results in full recovery of the remanence and roughly a 20% increase in the coercivity. Evidence from this experiment suggests that the primary mechanism for loss of remanence is nucleation of reverse domains by the collision cascade and subsequent growth into the original domain.

Published in:

Magnetics, IEEE Transactions on  (Volume:24 ,  Issue: 3 )

Date of Publication:

May 1988

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.