By Topic

Scattering parameter-based simulation of transients in lossy nonlinearly terminated packaging interconnections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vakanas, L.P. ; Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA ; Cangellaris, A.C. ; Palusinski, O.A.

A new and efficient approach is presented for the transient analysis of coupled transmission line structures frequently encountered in microelectronic packaging applications. Frequency-dependent parameters for the transmission lines, as well as nonuniformities in the cross-section of the structures are taken into account. The method is based on the scattering parameter representation of the lossy and/or nonuniform interconnects, An important advantage of this approach compared to previous scattering parameter formulations is that the scattering parameter models have been fully integrated with the standard SPICE models of nonlinear semiconductor devices such as bipolar and CMOS transistors, thus allowing realistic modeling of the driver and receiver circuits terminating the transmission lines. Moreover, measured scattering parameters and non-TEM models can also be included in the simulation. To illustrate the capabilities of this new method, several simulation studies showing the effects of losses and nonuniform interconnect geometries on the propagating signals in transmission line circuits with nonlinear terminations are included in the paper

Published in:

Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on  (Volume:17 ,  Issue: 4 )