By Topic

Spatial filtering for speckle reduction, contrast enhancement, and texture analysis of GLORIA images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sauter, D. ; Deacon Lab., Inst. of Oceanogr. Sci., Godalming, UK ; Parson, L.

This paper reports a comparative study of digital enhancement techniques using spatial filtering to improve the geologic interpretation of side-scan sonar GLORIA images. Seven algorithms for speckle reduction with window sizes of 3×3-7×7 pixel and various numbers of iterations were tested for cosmetic purposes, and also to improve subsequent image processing. The filtered images were evaluated using both quantitative and qualitative techniques. It was determined that a normalized inverse gradient weighted smoothing scheme, with a 3×3 pixel filter and five iterations, allows a significant speckle reduction without blurring the edges in the GLORIA image which correspond to geological structures. Three local contrast enhancement techniques were also tested and evaluated to increase the perception of these geologic structures. Subtracting the gradient magnitude twice, calculated with spatial filters of a 5×5 pixel on smoothed images, was found to enhance most GLORIA images. Texture analysis methods developed for GLORIA images of mid-oceanic ridges and based on edge detection and orientation determination by spatial filtering are also presented. It enables the GLORIA mosaic of the Rodriguez triple junction (Indian Ocean) to be partitioned into regions of preferred orientation corresponding to the different seafloor fabrics generated at each arm of the triple junction

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:19 ,  Issue: 4 )