By Topic

Three-dimensional simulation analysis of a 3 cm wavelength free-electron laser afterburner

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
C. Wang ; Res. Inst. of High Energy Electron., Univ. of Electron. Sci. & Technol. of China, Chengdu, China

We have simulated a 3 cm wavelength free-electron laser afterburner (FEL Afterburner) using two sets of parameters: one is for a 3-cm period wiggler and the other is for a 5.4 cm period wiggler. For the 3 cm period wiggler, the input beam energy is 112.5 keV, and for the 5.3 cm period wiggler the beam energy is increased to 290 keV to make the FEL Afterburner operate at the same frequency. It is found, from the simulations, that the FEL Afterburner with a longer period wiggler has a higher power conversion efficiency: larger than 16% $ for the 5.4 cm wiggler while only about 9% for the 3 cm wiggler. It is also shown that to enhance the interaction efficiency in the slow wave cavity, the slow wave number should be a little larger than the sum of the fast wave number and the wiggler wave number

Published in:

IEEE Transactions on Plasma Science  (Volume:22 ,  Issue: 5 )