We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Efficiency enhancement of high power vacuum BWO's using nonuniform slow wave structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Moreland, L.D. ; Dept. of Electr. & Comput. Eng., New Mexico Univ., Albuquerque, NM, USA ; Schamiloglu, E. ; Lemke, W. ; Korovin, S.D.
more authors

The Sinus-6, a high-power relativistic repetitively-pulsed electron beam accelerator, is used to drive various slow wave structures in a BWO configuration in vacuum. Peak output power of about 550 MW at 9.45 GHz was radiated in an 8-ns pulse. We describe experiments which study the relative efficiencies of microwave generation from a two-stage nonuniform amplitude slow wave structure and its variations without an initial stage. Experimental results are compared with 2.5 D particle-in-cell computer simulations. Our results suggest that prebunching the electron beam in the initial section of the nonuniform BWO results in increased microwave generation efficiency, Furthermore, simulations reveal that, in addition to the backward propagating surface harmonic of the TM01 mode, backward and forward propagating volume harmonics with phase velocity twice that of the surface harmonic play an important role in high-power microwave generation and radiation

Published in:

Plasma Science, IEEE Transactions on  (Volume:22 ,  Issue: 5 )