By Topic

Hierarchical classification of permutation classes in multistage interconnection networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
N. Das ; Electron. Unit, Indian Stat. Inst., Calcutta, India ; B. B. Bhattacharya ; J. Dattagupta

This paper explores a new hierarchy among different permutation classes, that has many applications in multistage interconnection networks. The well-known LC (linear-complement) class is shown to be merely a subset of the closure set of the BP (bit-permute) class, known as the BPCL (bit-permute-closure) class; the closure is obtained by applying certain group-transformation rules on the BP-permutations. It indicates that for every permutation P of the LC class, there exists a permutation PI in the BP class, such that the conflict graphs of P and P* are isomorphic, for n-stage MIN's. This obviates the practice of treating the LC class as a special case; the existing algorithm for optimal routing of BPC class in an n-stage MIN can take care of optimal routing of the LC class as well. Finally, the relationships of BPCL with other classes of permutations, e.g., LIE (linear-input-equivalence), BPIE (bit-permute-input-equivalence), BPOE (bit-permute-output-equivalence) are also exposed. Apart from lending better understanding and an integral view of the universe of permutations, these results are found to be useful in accelerating routability in n-stage MIN's as well as in (2n-1)-stage Benes and shuffle-exchange networks

Published in:

IEEE Transactions on Computers  (Volume:43 ,  Issue: 12 )