By Topic

Unified architecture for divide and conquer based tridiagonal system solvers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lopez, J. ; Dept. Arquitectura de Computadores, Malaga Univ., Spain ; Zapata, E.L.

The solution of tridiagonal systems is a topic of great interest in many areas of numerical analysis. Several algorithms have recently been proposed for solving triadiagonal systems based on the Divide and Conquer (DC) strategy. In this work we propose a unified parallel architecture for DC algorithms which present the data flows of the Successive Doubling, Recursive Doubling and Parallel Cyclic Reduction methods. The architecture is based in the perfect unshuffle permutation, which transforms these data flows into a constant geometry one. The partition of the data arises in a natural manner, giving way to a systolic data flow with a wired control section. We conclude that the constant geometry Cyclic Reduction architecture is the most appropriate one for solving tridiagonal systems and, from the point of view of integration in VLSI technology, is the one which uses the least amount of area and the smallest number of pins

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 12 )