Cart (Loading....) | Create Account
Close category search window
 

Storage-efficient, deadlock-free packet routing algorithms for torus networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cypher, R. ; Dept. of Comput. Sci., Johns Hopkins Univ., Baltimore, MD, USA ; Gravano, L.

We present two new packet routing algorithms for parallel computers with torus interconnection networks of arbitrary size and dimension. Both algorithms use only minimal length paths, are fully adaptive in the sense that all minimal length paths may be used to avoid congestion, and are free of deadlock, livelock and starvation. Algorithm 1 requires only three central queues per routing node. It is the first known minimal length packet routing algorithm for torus networks which requires a constant number of queues per node, regardless of the size and dimension of the torus. In fact, the requirement of three queues per node is optimal, as no such algorithm is possible when all nodes have two or fewer queues. Algorithm 2 requires only that each node have two input buffers per edge. It is the first known minimal-fully-adaptive packet routing algorithm for torus networks which does not require central queues and which does not require any node to have more than two input or two output buffers per edge. Both algorithms are simple and appear to be well-suited to VLSI implementation. They can be used with either store-and-forward or virtual cut-through routing

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 12 )

Date of Publication:

Dec 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.