By Topic

A functional approach to efficient fault detection in iterative logic arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. D. Friedman ; Dept. of Electr. Eng. & Comput. Sci., George Washington Univ., Washington, DC, USA

We consider the problem of fault detection in iterative logic arrays (ILA's). This problem has been studied by numerous researchers for many years. The results can be succinctly summarized by stating that one dimensional arrays can be effectively analyzed and significant results obtained while the problems associated with arrays of dimension two or greater appear to be intractable (i.e., NP-complete) for general arbitrary ILA's. However as is the case for many other switching theory problems, general case problems that are intractable, can be readily handled for the special cases defined by functions commonly encountered in practice. We show that arrays of dimension two or greater can be effectively tested for the case when the functions defined by the arrays have inverses. Many specific arithmetic functions satisfy this property. We also show that even for functions which do not satisfy this property, the functional approach simplifies testing problems considerably

Published in:

IEEE Transactions on Computers  (Volume:43 ,  Issue: 12 )