By Topic

A quadruple well, quadruple polysilicon BiCMOS process for fast 16 Mb SRAM's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

16 Author(s)
Hayden, J.D. ; Adv. Products Res. & Dev. Lab., Motorola Inc., Austin, TX, USA ; Taft, R.C. ; Kenkare, P. ; Mazure, C.
more authors

An advanced, high-performance, quadruple well, quadruple polysilicon BiCMOS technology has been developed for fast 16 Mb SRAM's. A split word-line bitcell architecture, using four levels of polysilicon and two self-aligned contacts, achieves a cell area of 8.61 μm2 with conventional I-line lithography and 7.32 μm2 with I-line plus phase-shift or with deep UV lithography. The process features PELOX isolation to provide a 1.0 μm active pitch, MOSFET transistors designed for a 0.80 μm gate poly pitch, a double polysilicon bipolar transistor with aggressively scaled parasitics, and a thin-film polysilicon transistor to enhance bitcell stability. A quadruple-well structure improves soft error rate (SER) and allows simultaneous optimization of MOSFET and bipolar performance

Published in:

Electron Devices, IEEE Transactions on  (Volume:41 ,  Issue: 12 )