By Topic

Lee-metric BCH codes and their application to constrained and partial-response channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roth, R.M. ; Dept. of Comput. Sci., Technion-Israel Inst. of Technol., Haifa, Israel ; Siegel, P.H.

Shows that each code in a certain class of BCH codes over GF(p), specified by a code length n⩽pm-1 and a runlength r⩽(p-1)/2 of consecutive roots in GF(pm), has minimum Lee distance ⩾2r. For the very high-rate range these codes approach the sphere-packing bound on the minimum Lee distance. Furthermore, for a given r, the length range of these codes is twice as large as that attainable by Berlekamp's (1984) extended negacyclic codes. The authors present an efficient decoding procedure, based on Euclid's algorithm, for correcting up to r-1 errors and detecting r errors, that is, up to the number of Lee errors guaranteed by the designed minimum Lee distance 2r. Bounds on the minimum Lee distance for r⩾(p+1)/2 are provided for the Reed-Solomon case, i.e., when the BCH code roots are in GF(p). The authors present two applications. First, Lee-metric BCH codes can be used for protecting against bitshift errors and synchronization errors caused by insertion and/or deletion of zeros in (d, k)-constrained channels. Second, the code construction with its decoding algorithm can be formulated over the integer ring, providing an algebraic approach to correcting errors in partial-response channels where matched spectral-null codes are used

Published in:

Information Theory, IEEE Transactions on  (Volume:40 ,  Issue: 4 )