By Topic

A metric entropy bound is not sufficient for learnability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. M. Dudley ; Dept. of Math., MIT, Cambridge, MA ; S. R. Kulkarni ; T. Richardson ; O. Zeitouni

The authors prove by means of a counterexample that it is not sufficient, for probably approximately correct (PAC) learning under a class of distributions, to have a uniform bound on the metric entropy of the class of concepts to be learned. This settles a conjecture of Benedek and Itai (1991)

Published in:

IEEE Transactions on Information Theory  (Volume:40 ,  Issue: 3 )