By Topic

A new approach to constructing optimal block codes for runlength-limited channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gu, J. ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; Fuja, T.E.

The paper describes a technique for constructing fixed-length block codes for (d, k)-constrained channels. The codes described are of the simplest variety-codes for which the encoder restricted to any particular channel state is a one-to-one mapping and which is not permitted to “look ahead” to future messages. Such codes can be decoded with no memory and no anticipation and are thus an example of what Schouhamer Immink (1992) has referred to as block-decodable. For a given blocklength n and given values of (d, k), the procedure constructs a code with the highest possible rate among all such block codes, and it does so without the iterative search that is typically used (i.e., Franaszek's recursive elimination algorithm). The technique used is similar to Beenker and Immink's (1983) “Construction 2” in that every message is associated with a (d, k, l, r) sequence of length n-d; however the values used in the present approach are l=k-d and r=k-1, as opposed to Beenker and Schouhamer Immink's values of l=r=k-d. Thus the present approach demonstrates that “Construction 2” is optimal for d=1 but is suboptimal for d>1. Furthermore, the structure of the present codes permits enumerative coding techniques to simplify encoding and decoding

Published in:

Information Theory, IEEE Transactions on  (Volume:40 ,  Issue: 3 )