Cart (Loading....) | Create Account
Close category search window
 

Induced electric currents in models of man and rodents from 60 Hz magnetic fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xi, W. ; Dept. of Electr. & Comput. Eng., Victoria Univ., BC, Canada ; Stuchly, M.A. ; Gandhi, O.P.

Induced electric currents in models of man, rat and mouse from 60 Hz magnetic fields are computed using the impedance method. The models all have realistic shapes, and in the case of rodents, a homogeneous average tissue conductivity is assumed. The model of man is analyzed for two cases, a homogeneous average tissue conductivity and a heterogeneous model, both consisting of 1.3 cm cubical tissue cells whose conductivities are representative of the tissue within the cube. The results for various models and species, as well as different orientations of the magnetic field, are compared. The data presented are useful as the first step in dosimetry for 60 Hz magnetic fields, and for interspecies scaling of biological interactions related to the tissue induced electric currents.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:41 ,  Issue: 11 )

Date of Publication:

Nov. 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.