By Topic

Power dissipation due to vibration-induced disturbances in maglev superconducting magnets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Scholle, E.A. ; Dept. of Nucl. Eng., Illinois Univ., Urbana, IL, USA ; Schwartz, J.

An important issue for electrodynamic maglev operation is quenching of the superconducting magnets induced by interactions with the guideway. Such quenching limited the velocity of the MLU002 maglev in Japan. Here we study one of the mechanisms by which the SCM-ground coil interactions affect the thermal stability of maglev SCM's. The time-varying forces are determined from the SCM-ground coil interaction and used to drive the vibration of the SCM. The damping of the vibration determines the power dissipated to the conductor and the coolant. The power dissipated within the conductor is used as input to the one-dimensional thermal stability analysis, based on the minimum propagating zone theory. The power dissipation due to the vibration-induced disturbances contributed to the thermal load of the MLU002 conductor, but was not sufficient to quench the magnets.<>

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:4 ,  Issue: 4 )