By Topic

Using symbolic computation to find algebraic invariants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Keren, D. ; Div. of Eng., Brown Univ., Providence, RI, USA

Implicit polynomials have proved themselves as having excellent representation power for complicated objects, and there is growing use of them in computer vision, graphics, and CAD. A must for every system that tries to recognize objects based on their representation by implicit polynomials are invariants, which are quantities assigned to polynomials that do not change under coordinate transformations. In the recognition system developed at the Laboratory for Engineering Man-Machine Studies in Brown University (LEMS), it became necessary to use invariants which are explicit and simple functions of the polynomial coefficients. A method to find such invariants is described and the new invariants presented. This work addresses only the problem of finding the invariants; their stability is studied in another paper

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 11 )