Cart (Loading....) | Create Account
Close category search window
 

On Poisson solvers and semi-direct methods for computing area based optical flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chhabra, A.K. ; Dept. of Electr. & Comput. Eng., Cincinnati Univ., OH, USA ; Grogan, T.A.

Simchony, Chellappa, and Shao (1990) proposed a semi-direct method for computing area based optical flow. Their method is based on the iterative application of a direct Poisson solver. This method is restricted to Dirichlet boundary conditions, i.e., it is applicable only when velocity vectors at the boundary of the domain are known a priori. The authors show, both experimentally and through analysis, that the semi-direct method converges only for very large smoothness. At such levels of smoothness, the solution is obtained merely by filling in the known boundary values; the data from the image is almost totally ignored. Next, the authors consider the Concus and Golub method (1973), another semi-direct method, for computing optical flow. This method always converges, but the convergence is too slow to be of any practical value. The authors conclude that semi-direct methods are not suited for the computation of area based optical flow

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 11 )

Date of Publication:

Nov 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.