By Topic

On the hierarchical Bayesian approach to image restoration: applications to astronomical images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Molina, R. ; Dept. de Ciencias de la Comput. e Inteligencia Artificial, Granada Univ., Spain

In an image restoration problem one usually has two different kinds of information. In the first stage, one has knowledge about the structural form of the noise and local characteristics of the restoration. These noise and image models normally depend on unknown hyperparameters. The hierarchical Bayesian approach adds a second stage by putting a hyperprior on the hyperparameters, where information about those hyperparameters is included. In this work the author applies the hierarchical Bayesian approach to image restoration problems and compares it with other approaches in handling the estimation of the hyperparameters

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 11 )