By Topic

The morphological structure of images: the differential equations of morphological scale-space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
van den Boomgaard, R. ; Fac. of Math. & Comput. Sci., Amsterdam Univ., Netherlands ; Smeulders, A.

We introduce a class of nonlinear differential equations that are solved using morphological operations. The erosion and dilation act as morphological propagators propagating the initial condition into the “scale-space”, much like the Gaussian convolution is the propagator for the linear diffusion equation. The analysis starts in the set domain, resulting in the description of erosions and dilations in terms of contour propagation. We show that the structuring elements to be used must have the property that at each point of the contour there is a well-defined and unique normal vector. Then given the normal at a point of the dilated contour we can find the corresponding point (point-of-contact) on the original contour. In some situations we can even link the normal of the dilated contour with the normal in the point-of-contact of the original contour. The results of the set domain are then generalized to grey value images. The role of the normal is replaced with the function gradient. The same analysis also holds for the erosion. Using a family of increasingly larger structuring functions we are then able to link infinitesimal changes in grey value with the gradient in the image

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 11 )