By Topic

Optimal waveform selection for tracking systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. J. Kershaw ; Dept. of Commun. & Electr. Eng., R. Melbourne Inst. of Technol., Vic., Australia ; R. J. Evans

Investigates adaptive waveform selection schemes where selection is based on overall target tracking system performance. Optimal receiver assumptions allow the inclusion of transmitted waveform specification parameters in the tracking subsystem defining equations. The authors give explicit expressions for two one-step ahead optimization problems for a single target in white Gaussian noise when the tracker is a conventional Kalman filter. These problems may be solved to yield the most improvement possible in tracking performance for each new transmitted pulse. In cases where target motion is restricted to one dimension, closed-form solutions to the local (one step ahead) waveform optimization problem have been obtained. The optimal waveform selection algorithms in the paper may be included with conventional Kalman filtering equations to form an enhanced Kalman tracker. Simulation examples are presented to illustrate the potential of the waveform selection schemes for the optimal utilization of the capabilities of modern digital waveform generators, including multiple waveform classes. The extension of the basic waveform optimization scheme to more complex tracking scenarios is also discussed

Published in:

IEEE Transactions on Information Theory  (Volume:40 ,  Issue: 5 )