By Topic

Suboptimum decoding of decomposable block codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
T. Takata ; Graduate Sch. of Inf. Sci., Nara Inst. of Sci. & Technol., Japan ; Y. Yamashita ; T. Fujiwara ; T. Kasami
more authors

To decode a long block code with a large minimum distance by maximum likelihood decoding is practically impossible because the decoding complexity is simply enormous. However, if a code can be decomposed into constituent codes with smaller dimensions and simpler structure, it is possible to devise a practical and yet efficient scheme to decode the code. This paper investigates a class of decomposable codes, their distance and structural properties. It is shown that this class includes several classes of well-known and efficient codes as subclasses. Several methods for constructing decomposable codes or decomposing codes are presented. A two-stage (soft-decision or hard-decision) decoding scheme for decomposable codes, their translates or unions of translates is devised, and its error performance is analyzed for an AWGN channel. The two-stage soft-decision decoding is suboptimum. Error performances of some specific decomposable codes based on the proposed two-stage soft-decision decoding are evaluated. It is shown that the proposed two-stage suboptimum decoding scheme provides an excellent trade-off between the error performance and decoding complexity for codes of moderate and long block length

Published in:

IEEE Transactions on Information Theory  (Volume:40 ,  Issue: 5 )