By Topic

Reconciliation of different gate-voltage dependencies of 1/f noise in n-MOS and p-MOS transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Scofield, J.H. ; Dept. of Phys., Oberlin Coll., OH, USA ; Borland, Nick ; Fleetwood, D.M.

We have examined the 1/f noise of 3 μm×16 μm, n- and p-MOS transistors as a function of frequency (f), gate-voltage (Vg ) and temperature (T). Measurements were performed for 3 Hz⩽f⩽50 kHz, 100 mV⩽|Vg-Vth|⩽4 V, and 77 K⩽T⩽300 K, where Vth is the threshold voltage. Devices were operated in strong inversion in their linear regimes. At room temperature we find that, for n-MOS transistors, S(Vd)∝Vd2/(Vg-Vth )2, and for p-MOS transistors, we generally find that S(Vd)∝Vd2/(Vg-Vth , consistent with trends reported by others. At lower temperatures, however, the results can be very different. In fact, we find that the temperature dependence of the noise and the gate-voltage dependence of the noise show similar features, consistent with the idea that the noise at a given T and Vg is determined by the trap density, Dt(E), at trap energies E=E(T,Vg). Both the T- and Vg-dependencies of the noise imply that Dt (E) tends to be constant near the silicon conduction band edge, but increases as E approaches the valence band edge. It is evidently these differences in Dt(E) that lead to differences in the gate-voltage dependence of the noise commonly observed at room temperature for n- and p-MOS transistors

Published in:

Electron Devices, IEEE Transactions on  (Volume:41 ,  Issue: 11 )