By Topic

Phase noise reduction by self-phase locking in semiconductor lasers using phase conjugate feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Petersen, L. ; Center for Broadband Telecommun., Tech. Univ. Denmark, Lyngby, Denmark ; Gliese, Ulrik ; Nielsen, T.N.

A theoretical analysis of the behavior of the frequency/phase noise of semiconductor lasers with external phase conjugate feedback is presented. It is shown that the frequency noise is drastically reduced even for lasers with butt-coupled phase conjugate mirrors. In this laser system, the phase noise takes a finite-low value corresponding to a state of first-order self-phase locking of the laser. As a result, the spectral shape of the laser signal does not remain Lorentzian but collapses around the carrier to a delta function with a close to carrier noise level of less than -137 dBc/Hz. The total phase variance of this laser signal, in a 20 GHz noise bandwidth, is less than 0.002 rad2

Published in:

Quantum Electronics, IEEE Journal of  (Volume:30 ,  Issue: 11 )