Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Polarization dragging in injected lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cotteverte, Jean-Charles ; Lab. d''Electron. Quantique-Phys. des Lasers, Rennes I Univ., France ; Ropars, G. ; Le Floch, Albert ; Bretenaker, F.

The vectorial injection locking of a slave laser by a linearly polarized master laser is theoretically and experimentally investigated, taking the nature and the stability of the eigenstates of the slave laser into account. It is proved that the behavior of the polarization, intensity, and frequency of the slave laser can be described by four nonlinear coupled differential equations, for lasers in which population inversion remains quite constant. In particular, it is shown that the stability of the eigenstates of the slave laser plays a dramatic role in the response of this laser to injection. Isotropic slave lasers are shown to follow adiabatically the polarization of the master laser in the frequency locking range. Loss anisotropic slave lasers exhibit a specific Adler tongue behavior and can support the transfer of the polarization of the master laser only along their eigenstates. Phase anisotropic slave lasers are shown to exhibit two bistable or simultaneous Adler curves and to offer new possibilities of all-optical command. In all of these cases, a good agreement is obtained between theory and experiment and the study of polarization throws light on the physics of injection locking

Published in:

Quantum Electronics, IEEE Journal of  (Volume:30 ,  Issue: 11 )