Cart (Loading....) | Create Account
Close category search window

A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Davis, M.G. ; Dept. of Electron. Eng., Univ. Coll. Dublin, Ireland ; O'Dowd, R.F.

A large-signal dynamic model capable of modeling the transient behavior of the output power and wavelength of multielectrode DFB lasers is described here. The key feature of the model is the use of a modified form of the transfer matrix method resulting in a time-dependent implementation of this technique. Other features are the inclusion of longitudinal spatial hole burning and nonlinear gain in the model. The versatility of the model is demonstrated in an analysis of the response of a two-electrode DFB laser under large-signal direct current modulation which illustrates the important role played by longitudinal spatial hole burning. The limited use of wavelength tunability in controlling chirp is also demonstrated. However, a scheme to improve the damping mechanism through nonuniform excitation called backbiasing is proposed. Finally, wavelength switching is demonstrated using the model

Published in:

Quantum Electronics, IEEE Journal of  (Volume:30 ,  Issue: 11 )

Date of Publication:

Nov 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.