By Topic

Rapid and accurate timing simulation of radiation-hardened digital microelectronics using VHDL

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brothers, C.P., Jr. ; Dept. of Electr. & Comput. Eng., Air Force Inst. of Technol., Wright-Patterson AFB, OH, USA ; Mehalic, M.

The development of a fast, yet accurate, timing simulation capability based on VHSIC Hardware Description Language (VHDL) without the use of back annotation of timing delay information is presented. This simulator is intended, primarily, for use with radiation-hardened microelectronic circuits in simulating timing of circuit operation in the pre-radiation and post-radiation environment. Additionally, this simulator works well, using simplified models, for conducting timing estimates of circuit operation in cases where radiation effects are not a concern. Development of the timing models used in the VHDL timing simulator are presented. The timing models are based on a gate output drive capability being represented as an equivalent drive resistance. The loads of the driving gate and the input gates are correspondingly represented by equivalent capacitance values. The resultant gate delays are calculated from the drive resistance and the combined load capacitances. The implementation of the timing models are incorporated into a VHDL library composed of logic gates, latches, and flip-flops. Simulations of circuits were run in SPICE and VHDL to assess the timing accuracy and simulation run time of the VHDL-based timing simulator versus SPICE, and results are presented. Final evaluation of the simulator included testing of a microprocessor control unit. In all cases, the VHDL-based simulation runs over two orders of magnitude quicker than the equivalent SPICE simulation. In the pre- and post-radiation environment, accuracy estimates are usually within five percent and always within 12 percent

Published in:

Aerospace and Electronics Conference, 1994. NAECON 1994., Proceedings of the IEEE 1994 National

Date of Conference:

23-27 May 1994