By Topic

Adaptive algorithms for non-Gaussian noise environments: the order statistic least mean square algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fu, Y. ; Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Williamson, G.A. ; Clarkson, P.

Convergence properties are studied for a class of gradient-based adaptive filters known as order statistic least mean square (OSLMS) algorithms. These algorithms apply an order statistic filtering operation to the gradient estimate of the standard least mean square (LMS) algorithm. The order statistic operation in OSLMS algorithms can reduce the variance of the gradient estimate (relative to LMS) when operating in non-Gaussian noise environments. A consequence is that in steady state, the excess mean square error can be reduced. It is shown that when the input signals are iid and symmetrically distributed, the coefficient estimates for the OSLMS algorithms converge on average to a small area around their optimal values. Simulations provide supporting evidence for algorithm convergence. As a measurement of performance, the mean squared coefficient error of OSLMS algorithms has been evaluated under a range of noise distributions and OS operators. Guidelines for selection of the OS operator are presented based on the expected noise environment

Published in:

Signal Processing, IEEE Transactions on  (Volume:42 ,  Issue: 11 )