By Topic

An associative architecture for genetic algorithm-based machine learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Machine-based learning will eventually be applied to solve real-world problems. In this work, an associative architecture teams up with hybrid AI algorithms to solve a letter prediction problem with promising results. This article describes an investigation and simulation of a massively parallel learning classifier system (LCS) that was developed from a specialized associative architecture joined with hybrid AI algorithms. The LCS algorithms were specifically invented to computationally match a massively parallel computer architecture, which was a special-purpose design to support the inferencing and learning components of the LCS. The LCS's computationally intensive functions include rule matching, parent selection, replacement selection and, to a lesser degree, data structure manipulation.<>

Published in:

Computer  (Volume:27 ,  Issue: 11 )