By Topic

The ART of adaptive pattern recognition by a self-organizing neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Carpenter, G.A. ; Center for Adaptive Syst., Boston Univ., MA, USA ; Grossberg, S.

The adaptive resonance theory (ART) suggests a solution to the stability-plasticity dilemma facing designers of learning systems, namely how to design a learning system that will remain plastic, or adaptive, in response to significant events and yet remain stable in response to irrelevant events. ART architectures are discussed that are neural networks that self-organize stable recognition codes in real time in response to arbitrary sequences of input patterns. Within such an ART architecture, the process of adaptive pattern recognition is a special case of the more general cognitive process of hypothesis discovery, testing, search, classification, and learning. This property opens up the possibility of applying ART systems to more general problems of adaptively processing large abstract information sources and databases. The main computational properties of these ART architectures are outlined and contrasted with those of alternative learning and recognition systems.<>

Published in:

Computer  (Volume:21 ,  Issue: 3 )