By Topic

Unsupervised segmentation of textured images using a hierarchical neural structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Yin ; Dept. of Electron., York Univ. ; N. M. Allinson

A hierarchical learning structure, combining a randomly-placed local window, a self-organising map and a local-voting scheme, has been developed for the unsupervised segmentation of textured images, which are modelled by Markov random fields. The system learns to progressively estimate model parameters, and hence classify the various textured regions. A globally correct segregation has consistently been obtained during extensive experiments on both synthetic and natural textured images

Published in:

Electronics Letters  (Volume:30 ,  Issue: 22 )