By Topic

Optimal unsupervised motor learning for dimensionality reduction of nonlinear control systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sanger, T.D. ; NASA Jet Propulsion Lab., Pasadena, CA, USA

In this paper, optimal unsupervised motor learning is defined to be a technique for finding the coordinate system of minimum dimensionality which can adequately describe a particular motor task. An explicit method is provided for learning a stable controller that translates commands within the new coordinate system into motor variables appropriate for plant control. The method makes use of previously described neural network algorithms including the generalized Hebbian algorithm, basis-function trees, and trajectory extension learning. Examples of applications to a real direct-drive two joint planar robot arm and a simulated three joint robot arm with visual sensing are given

Published in:

Neural Networks, IEEE Transactions on  (Volume:5 ,  Issue: 6 )